
The Addition of Geolocation to Sensor Networks

Robert Bryce1 and Gautam Srivastava2

1Heartland Software, Ardmore, CANADA
2Department of Mathematics and Computer Science, Brandon University, Brandon, CANADA

rbryce@heartlandsoftware.ca, srivastavag@brandonu.ca

Keywords: MQTT, IoT, networks, protocols, geolocation, broker

Abstract: Sensor networks are recently rapidly growing research area in wireless communications and distributed net-
works. A sensor network is a densely deployed wireless network of small, low cost sensors, which can be
used in various applications like health, environmental monitoring, military, natural disaster relief, and finally
gathering and sensing information in inhospitable locations to name a few. In this paper, we focus on one
specific type of sensor network called MQTT, which stands for Message Queue Transport Telemetry. MQTT
is an open source publisher/subscriber standard for M2M (Machine to Machine) communication. This makes
it highly suitable for Internet of Things (IoT) messaging situations where power usage is at a premium or
in mobile devices such as phones, embedded computers or microcontrollers. In its original state, MQTT is
lacking the ability to broadcast geolocation as part of the protocol itself. In today’s age of IoT however, it has
become more pertinent to have geolocation as part of the protocol. In this paper, we add geolocation to the
MQTT protocol and offer a revised version, which we call MQTT-G. We describe the protocol here and show
where we were able to embed geolocation successfully.

1 INTRODUCTION

Today, due to the increased use of smartphones,
push notification services are now commonly used
(Thangavel et al., 2014a). Push notifications ser-
vice keeps the device online for every certain com-
munication cycle, and the server pushes the mess
ages to each client when necessary. Compared to the
polling method, push notification method was proved
to be more efficient in battery and data consumption
(Banks and Gupta, 2014). MQTT is a client-Server
publish/subscribe messaging transport protocol, de-
scribed in Figure 2. It is light weight, open, sim-
ple, and designed to be easy to implement by both
publishers and subscribers alike. These characteris-
tics make it ideal for use in many situations, includ-
ing constrained environments such as for communi-
cation in Machine to Machine (M2M) and Internet of
Things (IoT) contexts where a small code footprint is
required and/or network bandwidth is at a premium.
As a well-known example, Facebook Messenger is
based on MQTT (Lee et al., 2013). MQTT Protocol is
suitable for implementing integrated Simple Notifica-
tion Service (SNS) gateway servers which can merge
different SNS protocols and OS into a unified single
platform. Also, there is no restriction in messaging

while using push notification services.
Some of the positive characteristics of MQTT are

its light weight nature and binary footprint, which
lead it to excel when transferring data over the wire.
In comparison to well used protocols like Hypertext
Transfer Protoccol (HTTP), it only has a minimal
packet overhead. Another important aspect of MQTT
is that it is extremely easy to implement on the client
side. This fits perfectly for constrained devices with
limited resources. Its ease of implementation was one
of the goals that was met when MQTT was invented
(Stanford-Clark and Hunkeler, 1999).

Figure 2: Publish and Subscribe Model of MQTT

Figure 1: Publish and Subscribe Model of MQTT

1.1 History

MQTT was invented by Andy Stanford-Clark (IBM)
and Arlen Nipper (Arcom, now Cirrus Link) in
1999. Its initial use was to create a protocol for
minimal battery loss and minimal bandwidth connect-
ing oil pipelines over satellite connections (Stanford-
Clark and Hunkeler, 1999). It was then updated to
include Wireless Sensor Networks in 2008 (Hunkeler
et al., 2008). In (Stanford-Clark and Hunkeler, 1999),
the following goals were specified:

• Simple to implement

• Provide a Quality of Service Data Delivery

• Lightweight and Bandwidth Efficient

• Data Agnostic

• Continuous Session Awareness

We focus here on an open source implementa-
tion of MQTT 3.1.1 called Mosquitto, prescribed
recently in (Light, 2017). Mosquitto provides stan-
dard compliant server and client implementations of
the MQTT messaging protocol.

To quote (Light, 2017),

MQTT uses a publish/subscribe model, has
low network overhead and can be imple-
mented on low power devices such microcon-
trollers that might be used in remote Internet
of Things sensors. As such, Mosquitto is in-
tended for use in all situations where there is
a need for lightweight messaging, particularly
on constrained devices with limited resources.

In our current project, we focus on three parts,
namely

• The main Mosquitto server

• The Mosquitto publish and subscribe client utili-
ties

• An MQTT client library written in C/C++ wrap-
per

1.2 Current Uses of Mosquitto

We have seen some very interesting applications of
MQTT recently using Mosquitto. First, (Thangavel
et al., 2014b) compared the performance of MQTT
and the Constrained Application Protocol (CoAP).
CoAP is a specialized web transfer protocol for use
with constrained nodes and constrained networks in
IoT. The protocol is designed for M2M applications
such as smart energy and building automation. In
(Fremantle et al., 2014), the authors investigated the
use of OAuth in MQTT. OAuth is an open protocol
to allow secure authorization in a simple and standard
method from web, mobile and desktop applications.

We have also seen Mosquitto used to evaluate
MQTT for use in Smart City Services (Antonić et al.,
2015). The authors compare MQTT and CUPUS in
the context of smart city application scenarios, which
is currently a hot topic with many large cities want-
ing to join the digital age and become Smart Cities.
Furthermore, it has been used in the development of
an environmental monitoring system (Bellavista et al.,
2017). Mosquitto has also been used to support re-
search less directly as part of a scheme for remote
control of an experiment (Schulz et al., 2014).

Figure 3: Publish and Subscribe Model of MQTT

1.3 MQTT Publish/Subscribe Pattern

In a publish/subscribe pattern a client publishes in-
formation and other clients can subscribe to only the
information they want. In many cases there is a bro-
ker between the clients who facilitates and/or filters
the information. This allows for a loose coupling be-
tween entities.

The decoupling can occur in a few different ways:
Space, Time, and Synchronization.

• Space - the subscriber does not need to know who
the publisher is, for example by IP address, and
vice-versa

• Time - the two clients do not have to be running
at the same time

• Synchronization - Publishing and receiving does
not halt operations

Through the filtering done by the broker not all
subscribers have to get the same messages. The bro-
ker can filter on subject, content, or type of message.
A client, therefore could subscribe to only messages
about temperature data or only messages with content
about centrifuge machines. They could only want to
receive information about specific types of errors as
well. In our version MQTT-G, we also add the ability
for clients to receive messages based on some geolo-
cation criteria.

1.4 Simple Example

Thinking about an IoT situation with, for example,
a device with environmental sensors connected to it
such as a temperature sensor and a moisture sensor,
we could be publishing that data. Specific clients that
are connected to our broker may be interested in that
and others may not. They would subscribe to the in-
formation they want and the broker would provide the

necessary information accordingly. The topic string is
determinant regarding whether the data is forwarded
to the subscriber or not. To date, we have seen lots
of work on IoT with various uses and applications
(Kopetz, 2011),(Weber and Weber, 2010), (Wortmann
and Flüchter, 2015), and (Xia et al., 2012).

Once connected to the broker the publishing client
simply sends its data to the broker. Once there, the
broker relays the appropriate data onto the clients who
have subscribed for that data. Again, those subscrip-
tions can be filtered. The subscribing client then has
the opportunity to use or discard the packet upon ar-
rival. All of this data transferring is done in a light
weight fashion designed for small, resource limited
devices; network usage is efficient because logic on
the broker’s side provides the initial filtering.

The message packet shown in Figure 3 is just an
example of what a message may look like. Along
with the message, or payload, a real packet would
include additional information such as a packet ID,
topic name, and quality of service (QoS) level. Also
included in the packet would be flags so the broker
knows how long to retain the message and if the mes-
sage is a duplicate.

This is just the tip of the iceberg for MQTT; there
are several other features of interest as well. Fea-
tures such as Retained Messages, Quality of Service,
Last Will and Testament, Persistent Sessions, and
SYS Topics to name a few. It should also come as
no surprise given the importance of security in to-
day’s world, that MQTT has strong security features
as well.

1.4.1 Our Contributions

We modify MQTT by adding geolocation information
into specific MQTT packets such that, for example,
client location could be tracked by the broker, and

Figure 4: Polygon Geofence

clients can subscribe based on geolocation. This can
lead to the clients last known location having a com-
parison to a polygon geofence. One of the important
features of GPS Tracking software using GPS Track-
ing devices is geofencing and its ability to help keep
track of assets. Geofencing allows users of a Global
Positioning System (GPS) Tracking Solution to draw
zones (GeoFence) around places of importance, cus-
tomers sites and secure areas.

In MQTT-G, by adding geolocation, information
reaching subscribers can be filtered out by the bro-
ker to only fall within the subscribers geofence. We
can see an example of a geofence in Figure 4. Take
for example a forest fire containment situation. By
prescribing a geofence, specific subscribers can work
to contain the fire knowing the polygon geofence in
real time as given out by the messages from the bro-
kers to clients and without receiving messages asso-
ciated with a seperate geofence/forest fire. Further-
more, third-party additions to the containment of the
fire could quickly be added to the subscriptions us-
ing the geofence. Other subscribers (managers) may
choose geofence (being a political boundary) to mon-
itor all messages associated with all geofences/forest
fires in a given area. The applications for this are
plenty and include:

• Field team coordination

• Search and rescue improvements

• Advertising notifications to customers within spe-
cific ranges

• Emergency notifications, such as inclement
weather or road closures.

2 RESULTS

The basis of adding geolocation to MQTT is to lever-
age unused binary bin data within the protocol defini-
tion itself and optionally embedding geolocation data
between the header and payload. The major change
to the packets was the inclusion of the Geolocation
Flag. The flag is sent in packets between the client to
broker to notify the broker that a client is sending ge-
olocation data in the packet. The packets that are used
to send geolocation information are given in Table 1
derived from the original protocol implementation.

Geolocation is not sent for CONNACK, SUB-
ACK, UNSUBACK, PINGRESP packets as they are
only for information passed from broker to client, and
thereby deemed unnecesary to contain geolocation in-
formation. For all packets mentioned in Table 1, with
the exception of PUBLISH, the 3rd bit of the fixed
header is unused (reserved) in the original implemen-
tation in (Stanford-Clark and Hunkeler, 1999), so we
can easily use it to indicate the presence of geoloca-
tion information.

Figures 5 and 6 explain where the location data is
on the packet. We also give the structure of the code
shown by the struct mosquitto location.
struct mosquitto_location {
uint8_t version;
double lat, lon;
float elev;
};

The PUBLISH control packet needs a different
implementation. Because the 3rd bit is already al-
located for Quality of Service (QOS), and all other
packets are also reserved for an existing use, we chose
to implement a new control packet type. PUBLISHg
(=0xF0) is used as the flag type for geolocation data

Table 1: Packets Used For Geolocation

Packet Details
CONNECT client request to connect to Server
PUBLISH Publish message
PUBACK Publish acknowledgment
PUBREC Publish received (assured delivery part 1)
PUBREL Publish received (assured delivery part 2)
PUBCOMP Publish received (assured delivery part 3)
SUBSCRIBE client subscribe request
UNSUBSCRIBE Unsubscribe request
PINGREQ PING request
DISCONNECT client is disconnecting

when it is to be sent. There are 16 available command
packet types within the MQTT standard and 0 through
14 are used.

We deem geolocation data as an optional attribute,
as not all clients may wish to publish any geolocation
data. The geolocation of manager of the forest fire
crews in the aforementioned example does not need
to be shared with the crews, it is irrelevant. In our ap-
proach, geolocation data is not included in the packet
payload, since not all packet types support a payload,
thus rendering payloads not a viable option. Further-
more, we did not wish to require the broker to exam-
ine the payload of any packet, thus keeping our pro-
cessing footprint low.

2.1 Justification of Overhead

There are many transport protocols that MQTT pack-
ets may go over in size, where 21 bytes may be a
concern. However, if you are using TCP/IP as we
discuss here, 21 bytes is negligible when considering
the bytes required just for the overhead of TCP/IP.
Finally, there is no need for a client to only sub-
mit MQTT-G (geolocation) packets; there is nothing
stopping a client to submit MQTT-G packets when it
is time to update location, then just use unmodified
MQTT packets otherwise. The logic is based on a
single bit, and we have not introduced any require-
ment that all packets must be MQTT-G either from a
specific client or from multiple clients.

2.2 Handling of packets

Packets that are received without geolocation are han-
dled via the original Mosquitto functions, and as such
can be left unmodified. Packets that are received with
geolocation are handled similarly but with a call to a
last known location updating method, which stores
the clients unique ID and the location data into a
Hashtable object designed to be compared against

the geofence if and only if they are a subscriber to
be sent a PUBLISH. We have elected to attach geolo-
cation data from all packet types originating from the
client to eliminate the need for specific packets carry-
ing only geolocation data, and thus reducing overall
network traffic as well.

2.3 Quality of Service

To ensure the reliability of messaging, MQTT sup-
ports 3 levels of Quality of Services(QoS) (Behnel
et al., 2006). Figure 7 shows packet exchange mea-
sure according to 3 different QoS levels. QoS Level 0
sends message only once following the message dis-
tribution flow, and does not check whether the mes-
sage arrived to its destination. Therefore, in case of
sizable messages, it is possible that the message will
be lost when any kind of loss comes in the way. QoS
Level 1 sends the message at least once, and checks
the delivery status of the message by using the sta-
tus check message, PUBACK. However, when PUB-
ACK is lost, it is possible that the server will send
the same message twice, since it has no confirmation
of the message being delivered. QoS Level 2 passes
the message through exactly once utilizing the 4-way
handshake. It is not possible to have a message loss
in this level, but due to the complicated process of 4-
way handshake, it is possible to have relatively longer
end-to-end delays. The higher QoS level is the more
packets will be exchanged.

Figure 7: Quality of Service

Figure 5: Original MQTT Packet

Figure 6: MQTT Geolocation Packet

It is true that higher-level QoS is more effective if
you do not want any message loss, but such compli-
cated processes will increase the end-to-end delay. If
we can deduct appropriate QoS level utilizing correla-
tion analysis of the relationship between the message
loss due to the size of payload and the end-to-end de-
lay, it will be possible to build a optimal service net-
work for push notification services.

2.4 Geofencing

Creating the geofence code was a major part of the ad-
dition of geolocation to MQTT. The geofence filtering
is only called when a PUBLISH reaches the broker, as
these packets are forwarded to subscribing clients.

The mosquitto check polygon returns a boolean
value indicating whether the clients last known loca-
tion is within the polygon. If the point is outside the
polygon, it simply aborts forwarding the PUBLISH
as the client has indicated it is not interested in the
message. This condition is tested for each client so
that other subscribers may receive packets of interest.
Thus, we have used our own custom geometry library
originally implemented in (Tymstra et al., 2010) with
features first discussed in (Bose et al., 2009). The
library is unmodified for the broker implementation,
but it is reconfigured for mobile clients.

Geofence data is presently submitted and cleared

by a client to the broker using the $SYS MQTT topic
convention so that clients may individually submit ge-
ofences of interest. The broker maintains polygon
data for each subscribing client. Polygons may be
static in shape and location or dynamic and move with
the last known location of the client.

3 FUTURE WORK

We are still finishing the final testing of the implemen-
tation of MQTT-G for the Android OS. Once finished,
the implementation pull geolocation directly from the
Android OS and allow clients to quickly and easily
create and destroy polygon geofences on the go. Ap-
plications of the Android client are plentiful but have
some key uses in natural disaster containment and
safety in this age of mobile devices and Internet of
Things.

One alternative approach that we have not ex-
plored is introducing geolocation data to the MQTT
payload. However, in this instance, the packet would
need to be forwarded to a specific client understand-
ing the format of the payload, then sending the PUB-
LISH data on another topic for interested clients to
subscribe to. This division of logic between a sepa-
rate client and the broker potentially doubles the load
on the broker and is thus not considered. However,

geofencing remains an expensive operation in com-
parison to the rest of the broker logic, and future ver-
sions of the broker will be multithreaded to address
performance concerns.

4 CONCLUSION

MQTT is an open source standard for M2M commu-
nication. Originally designed by IBM, the main use
for MQTT is as a publisher/subscriber protocol. In
this paper, we have introduced a new version, called
MQTT-G, that adds geolocation information to the
protocol and offers a revised implementation, that can
help aid in the breadth of uses for MQTT. We also
modernize the protocol to include a somewhat stan-
dard feature of most protocols in today’s IoT age. The
advanced protocol we implement can be used to of-
fer geolocation as part of the publish/subscribe infras-
tructure, thus aiding in the real time applications that
it can be used for. Our implementations offer versions
for both its native C/C++ environment and as a mobile
Android client as well.

REFERENCES

Antonić, A., Marjanović, M., Skočir, P., and Žarko, I. P.
(2015). Comparison of the cupus middleware and
mqtt protocol for smart city services. In Telecommu-
nications (ConTEL), 2015 13th international confer-
ence on, pages 1–8. IEEE.

Banks, A. and Gupta, R. (2014). Mqtt version 3.1. 1. OASIS
standard, 29.

Behnel, S., Fiege, L., and Muhl, G. (2006). On quality-of-
service and publish-subscribe. In Distributed Com-
puting Systems Workshops, 2006. ICDCS Workshops
2006. 26th IEEE International Conference on, pages
20–20. IEEE.

Bellavista, P., Giannelli, C., and Zamagna, R. (2017). The
pervasive environment sensing and sharing solution.
Sustainability, 9(4):585.

Bose, C., Bryce, R., and Dueck, G. (2009). Untangling the
prometheus nightmare. In Proc. 18th IMACS World
Congress MODSIM09 and International Congress on
Modelling and Simulation, Cairns, Australia, pages
13–17.

Fremantle, P., Aziz, B., Kopeckỳ, J., and Scott, P. (2014).
Federated identity and access management for the in-
ternet of things. In Secure Internet of Things (SIoT),
2014 International Workshop on, pages 10–17. IEEE.

Hunkeler, U., Truong, H. L., and Stanford-Clark, A. (2008).
Mqtt-sa publish/subscribe protocol for wireless sen-
sor networks. In Communication systems software
and middleware and workshops, 2008. comsware
2008. 3rd international conference on, pages 791–
798. IEEE.

Kopetz, H. (2011). Internet of things. In Real-time systems,
pages 307–323. Springer.

Lee, S., Kim, H., Hong, D.-k., and Ju, H. (2013). Correla-
tion analysis of mqtt loss and delay according to qos
level. In Information Networking (ICOIN), 2013 In-
ternational Conference on, pages 714–717. IEEE.

Light, R. A. (2017). Mosquitto: server and client implemen-
tation of the mqtt protocol. Journal of Open Source
Software, 2(13).

Schulz, M., Chen, F., and Payne, L. (2014). Real-time an-
imation of equipment in a remote laboratory. In Re-
mote Engineering and Virtual Instrumentation (REV),
2014 11th International Conference on, pages 172–
176. IEEE.

Stanford-Clark, A. and Hunkeler, U. (1999). Mq telemetry
transport (mqtt). Online]. http://mqtt. org. Accessed
September, 22:2013.

Thangavel, D., Ma, X., Valera, A., Tan, H.-X., and Tan,
C. K.-Y. (2014a). Performance evaluation of mqtt
and coap via a common middleware. In Intelligent
Sensors, Sensor Networks and Information Processing
(ISSNIP), 2014 IEEE Ninth International Conference
on, pages 1–6. IEEE.

Thangavel, D., Ma, X., Valera, A., Tan, H.-X., and Tan,
C. K.-Y. (2014b). Performance evaluation of mqtt
and coap via a common middleware. In Intelligent
Sensors, Sensor Networks and Information Processing

(ISSNIP), 2014 IEEE Ninth International Conference
on, pages 1–6. IEEE.

Tymstra, C., Bryce, R., Wotton, B., Taylor, S., Armitage,
O., et al. (2010). Development and structure of
prometheus: the canadian wildland fire growth sim-
ulation model. Natural Resources Canada, Canadian
Forest Service, Northern Forestry Centre, Information
Report NOR-X-417.(Edmonton, AB).

Weber, R. H. and Weber, R. (2010). Internet of things, vol-
ume 12. Springer.

Wortmann, F. and Flüchter, K. (2015). Internet of
things. Business & Information Systems Engineering,
57(3):221–224.

Xia, F., Yang, L. T., Wang, L., and Vinel, A. (2012). Internet
of things. International Journal of Communication
Systems, 25(9):1101.

