
Green Communication Protocol with Geolocation
Gautam Srivastava∗‡, Andrew Fisher∗†, and Robert Bryce†

∗ Department of Mathematics and Computer Science, Brandon University, Brandon, Manitoba, Canada
† Heartland Software Solutions Inc., Ardmore, Alberta, Canada

‡ Research Center for Interneural Computing, China Medical University, Taichung, Taiwan, Republic of China

Abstract—Green communications is the practice of selecting
energy efficient communications, networking technologies and
products. This process is followed by minimizing resource use
whenever possible in all branches of communications. In this
day and age, green communication is vital to the footprint we
leave on this planet as we move into a completely digital age. One
such communication tool is Message Queue Transport Telemetry
or MQTT which is an open source publisher/subscriber standard
for M2M (Machine to Machine) communication. It is well known
for its low energy and bandwidth footprint and thus makes it
highly suitable for Green Internet of Things (IoT) messaging
situations where power usage is at a premium or in mobile devices
such as phones, embedded computers or microcontrollers. It is a
perfect tool for the green communication age upon us and more
specifically Green IoT. One problem however with the original
MQTT protocol is that it is lacking the ability to broadcast
geolocation. In today’s age of IoT however, it has become more
pertinent to have geolocation as part of the protocol. In this paper,
we add geolocation to the MQTT protocol and offer a revised
version, which we call MQTTg. We describe the protocol here
and show where we are able to embed geolocation successfully.
We also offer a early glimpse into an Android OS application
we are developing for Open Source use.

Keywords—Green communication, MQTT, IoT, networks, pro-
tocols, geolocation, broker

I. INTRODUCTION

Today, the world is at a crossroads when it comes to many
complex issues. Some include sustainable cities, pollution,
safety, and most importantly energy consumption [1]. Internet
of Things (IoT) is considered the core technology for building
Smart Cities that will solve some of these problems. The core
component of most IoT solutions is being connected to the
internet. The use of more efficient sensor networks, adoption
of cloud based services, and a lower energy footprint will all
improve the quality of life in these Smart Cities. We can see
IoT support the building of Smart Cities through:

• Lowering the consumption of water
• Medics with access to medical data in real time
• Real time energy consumption sensors
• smart street lights that can detect traffic
At the core of IoT is the idea that technology devices

located in different places will communicate with each other
and generate large amounts of data [2], [3]. Moreover, some of
these devices and sensors maybe movable or in motion, fueling
the need for geolocation to be part of the data collected or
used. Consequently, there is a need to implement geolocation

in the network protocols used. Moreover, taking into account
what was mentioned earlier, these protocols need to be light
in nature, where both bandwidth, energy consumption, and
carbon footprint need to be taken into account when selecting
the right protocol for the applications that require them. Thus
the need for green communication and in turn green IoT is
what Smart cities are in need of the most.

In this paper, we propose and develop a framework to im-
prove the protocol MQTT. We call our new protocol MQTTg.
It is a widely used and well known protocol for sharing data
exchanged between IoT devices. MQTT is an extremely simple
and lightweight messaging protocol in its original form, with
a publish/subscribe architecture. It was designed to be straight
forward to deploy, and capable of supporting thousands of
clients with just a single server. In addition, MQTT provides
reliability and efficiency in adverse conditions, which makes
it perfect for sensor network use in both wired and wireless
scenarios. All these features make this protocol one of the most
used protocols for the communication between smart devices,
with a high number of applications based on it, increasing
rapidly over time [4], [5]. A claim to fame for MQTT was its
deployment as the core protocol for Facebook Messenger [6].

Previous to the work here, we had attempted to tackle
MQTTg using the Mosquitto implementation [7], [8] of the
protocol. Mosquitto is an open source implementation of
MQTT 3.1.1 which was prescribed recently in [5]. Mosquitto
provides standard compliant server and client implementations
of the MQTT messaging protocol, however lacked some in
code deployment needed to make MQTTg a success. More
specifcally, due to the way Mosquitto implemented MQTT,
having it synchronize all the geolocation changes made to
packets became infeasable. However, our praise of the MQTT
protocol itself remains strong. We were initally drawn to
MQTT due to its envisioned future in Green IoT and Green
communications. To quote [5],

MQTT uses a publish/subscribe model, has low
network overhead and can be implemented on low
power devices such micro-controllers that might
be used in remote Internet of Things sensors. As
such....is intended for use in all situations where
there is a need for lightweight messaging, particu-
larly on constrained devices with limited resources.

In our current project, we move away from Mosquitto and

focus on a combination of the MQTTnet [9] for the main
deployment of MQTTg and Paho [10] for the Android OS
Application. MQTTnet is a high performance .NET library
for MQTT based communication. It provides the essential
MQTT client (subscriber) and a MQTT server (broker) in a
C# environment. The Paho project has been created to provide
scalable open source implementations of open and standard
messaging protocols aimed at emerging MQTT applications
for Machine-to-Machine (M2M) and Internet of Things (IoT).
Paho reflects the inherent physical and cost constraints of
device connectivity. Paho initially started with MQTT pub-
lish/subscribe client implementations for use on embedded
platforms. Using Paho and porting MQTTg from MQTTnet
to a Java based implementation will make it more accessible
to multiple Operating Systems. We specifically focus MQTTg
here in three parts, namely

• MQTTnet C# Desktop (Server and Client)
• Paho Java Desktop
• An Android OS App using Paho (Java)
The rest of the paper is organized as follows. In Section II,

we briefly explain the basic concepts needed to understand the
work presented here. We follow that with our main results in
Section III. We end the paper first with a look at future work
in Section IV and finally with the conclusions in Section V.

II. BACKGROUND AND MOTIVATION

MQTT was invented by Andy Stanford-Clark (IBM) and
Arlen Nipper (Arcom, now Cirrus Link) in 1999. Its initial
use was to create a protocol for minimal battery loss and
minimal bandwidth connecting oil pipelines over satellite
connections [11]. It was then updated to include Wireless
Sensor Networks in 2008 [12]. In [11], the following goals
were specified:

• Simple to implement
• Provide a Quality of Service Data Delivery
• Lightweight and Bandwidth Efficient
• Data Agnostic
• Continuous Session Awareness
MQTT uses a client-Server publish/subscribe messaging

pattern that enables a coupling between the information
provider, known as the publisher, and consumers of informa-
tion, called subscribers. This quality is achieved by introducing
a message broker between the publishers and subscribers.

Fig. 1: Publish and Subscribe Model of MQTT

Compared with the traditional point-to-point protocols, the
advantage of MQTT is that the publishing device does not

need to know anything about the subscribing device, and vice
versa. We can distinguish three MQTT essential concepts that
will remain present throughout the paper.

1) Topics: The publishers are responsible for cataloguing
the messages they send in topics. A topic defines the
content of a message or a category in which the message
can be classified. Topics are important because while
in the point-to-point protocols messages are sent to a
specific address, in a publish/subscribe protocol, mes-
sages are distributed based on the selected topics by
the subscriber. By subscribing to a particular topic, the
subscriber will receive all messages sent with that topic
by any publisher.

2) Client: MQTT clients connect to a broker to exchange
messages. They must subscribe to topics and can publish
information to other entities connected to the same
broker by providing a topic.

3) Broker: MQTT brokers are servers acting as interme-
diaries for the messages. MQTT protocol messages’
format consists of three parts: a fixed header, a variable
header; and a payload, all shown in Figure 2;

MQTT is one of the most used protocols in the world. We
summarize many of those uses in Table I.

TABLE I: Use Cases for MQTT

Brokers Clients Smart Applications
SurgeMQ hbmqtt FHEM
hrotti rumqtt pimatic
VerneMQ Paho Home Assistant
Moquette mqtt cpp aqara-mqtt
HiveMQ M2Mqtt cul2mqtt
Azure MQTT Rx HA4IoT
Moquitto CocaoMQTT Homegear
MQTTnet emqttc Domoticz

A. Related Work

We have seen some very interesting applications of MQTT
recently. First, [13] compared the performance of MQTT and
the Constrained Application Protocol (CoAP). CoAP is a
specialized web transfer protocol for use with constrained
nodes and constrained networks in IoT. The protocol is
designed for M2M applications such as smart energy and
building automation. In [14], the authors investigated the use
of OAuth in MQTT. OAuth is an open protocol to allow
secure authorization in a simple and standard method from
web, mobile and desktop applications.

We have also seen MQTT used to evaluate MQTT for use
in Smart City Services [15]. The authors compare MQTT and
CUPUS in the context of smart city application scenarios,
which is currently a hot topic with many large cities wanting
to join the digital age and become Smart Cities. Furthermore,
it has been used in the development of an environmental
monitoring system [16]. MQTT has also been used to support
research less directly as part of a scheme for remote control
of an experiment [17].

Fig. 2: Original MQTT Packet

B. Our Contributions

We modify both MQTTnet and Paho by adding geolocation
information into specific MQTT packets such that, for exam-
ple, client location could be tracked by the broker, and clients
can subscribe based on not only topics but also by geolocation.
A list of all MQTT packets is given in Table II. This can lead
to the client’s last known location having a comparison to
a polygon geofence. One of the important features of GPS
Tracking software using GPS Tracking devices is geofencing
and its ability to help keep track of assets. Geofencing allows
users of a Global Positioning System (GPS) Tracking Solu-
tion to draw zones (GeoFence) around places of importance,
customer’s sites and secure areas.

Fig. 3: Polygon Geofence

In MQTTg, by adding geolocation, information reaching
subscribers can be filtered out by the broker to only fall
within the subscribers geofence. We can see an example of
a geofence in Figure 3. As a green IoT example, take a Smart
City driving conditions situation. By prescribing a geofence
where driving conditions may not be adequate for a variety of
reasons (weather, construction, accident), specific subscribers
on a Smart City topic like ”driving conditions” would receive
updates based if there geolocation in real time were to intersect
with a polygon geofence where driving conditions may be
abnormal. Other subscribers would receive different messages
based on their driving routes in the city. The applications for
this are plenty and include:

• Field team coordination
• Search and rescue improvements
• Advertising notifications to customers within specific

ranges
• Emergency notifications, such as inclement weather or

road closures.

III. RESULTS

The basis of adding geolocation to MQTT is to leverage
unused binary bin data within the protocol definition itself

and optionally embedding geolocation data between the header
and payload, as shown in Figure 4. We show the 21 bytes of
Geolocation data as indicated in Figure 4 in Listing 1.

Listing 1: Struct for Geolocation Data
1 struct mqttGeog {
2 std::uint8_t version;
3 double latitude, longitude;
4 float elevation;
5 };

The major change to the packets themselves was the inclusion
of the Geolocation Flag. The flag is sent in packets between
the client (subscriber) to broker to notify the broker that a
client is sending geolocation data in the packet. The packets
that are used to send geolocation information are given in
Table II derived from the original protocol implementation.
In Listing 2, we see the updated C# code for MQTTnet
packet deserializer for the Publish/PublishG packet. The is-
Geog Boolean passed is based on the packet type identified
by the calling method. Based on this geolocation flag we treat
the Publish/PublishG packets differently.

TABLE II: Types of MQTT Packets used for Geolocation

Packet Description
CONNECT client request to connect to Server
PUBLISH Publish message
PUBACK Publish acknowledgement
PUBREC Publish received (assured delivery part 1)
PUBREL Publish received (assured delivery part 2)
PUBCOMP Publish received (assured delivery part 3)
SUBSCRIBE client subscribe request
UNSUBSCRIBE Unsubscribe request
PINGREQ PING request
DISCONNECT client is disconnecting

Listing 2: C# Code from the MQTTnet Packet De-Serializer
1 private static MqttBasePacket DeserializePublish

(MqttPacketReader reader, MqttPacketHeader
mqttPacketHeader, bool isGeog)

2 {
3 var fixedHeader = new ByteReader(

mqttPacketHeader.FixedHeader);
4 var retain = fixedHeader.Read();
5 var qualityOfServiceLevel = (

MqttQualityOfServiceLevel)
fixedHeader.Read(2);

6 var dup = fixedHeader.Read();

Fig. 4: MQTT Geolocation Packet

7

8 var topic = reader.
ReadStringWithLengthPrefix();

9

10 ushort packetIdentifier = 0;
11 if (qualityOfServiceLevel >

MqttQualityOfServiceLevel.
AtMostOnce)

12 {
13 packetIdentifier = reader.

ReadUInt16();
14 }
15

16 MqttGeog GeoLocation = null;
17 if (isGeog)
18 {
19 GeoLocation = new MqttGeog();
20 GeoLocation.version = reader.

ReadByte();
21 GeoLocation.latitude = reader.

ReadDouble();
22 GeoLocation.longitude = reader.

ReadDouble();
23 GeoLocation.elevation = reader.

ReadSingle();
24 }
25

26 var packet = new MqttPublishPacket
27 {
28 Retain = retain,
29 QualityOfServiceLevel =

qualityOfServiceLevel,
30 Dup = dup,
31 Topic = topic,
32 Payload = reader.

ReadRemainingData(),
33 PacketIdentifier =

packetIdentifier
34 };
35

36 packet.GeoLocation = GeoLocation;
37

38 return packet;
39 }

From the Paho MQTTg implementation, Listing 3 gives the
updated Java implementation for de-serializing MQTT packets
which they call WireMessage. For a Publish packet, the Java
client is normally setup to determine the topic when creating
a new MqttPublish object. For a PublishG packet, it is setup
to have the topic before the geolocation data. So, the code is
modified to do as such if one is received. The Java client also
expects to be able to read the geolocation data in big endian
the way that their getDouble and getFloat methods are setup.
The geolocation data is, however, encoded in little endian so
the bytes need to be reversed to get the correct output for this

data. To be consistent, we are adhering to the IEEE floating
point representations everywhere.

Listing 3: Poha Java Code Packet De-Serializer
1 private static MqttWireMessage createWireMessage

(InputStream inputStream) throws
MqttException {

2 try {
3 CountingInputStream counter = new

CountingInputStream(inputStream);
4 DataInputStream in = new DataInputStream(

counter);
5 int first = in.readUnsignedByte();
6 byte type = (byte) (first >> 4);
7 byte info = (byte) (first &= 0x0f);
8

9 long remLen = readMBI(in).getValue();
10 long totalToRead = counter.getCounter() +

remLen;
11

12 MqttWireMessage result;
13

14 MqttGeog geoLoc = null;
15 String topic = null;
16

17 if (type == MqttWireMessage.
MESSAGE_TYPE_PUBLISHG) {

18 geoLoc = new MqttGeog();
19 //The C# implementation reads the topic

before the GeoLocation
20

21 int len = in.readUnsignedShort();
22

23 byte[] encodedString = new byte[len];
24 in.readFully(encodedString);
25

26 topic = new String(encodedString, "UTF-8");
27

28 geoLoc.version = in.readByte();
29

30 int i = 1;
31 byte[] lat = new byte[8];
32 i = 0;
33 while(i < 8) {
34 lat[7 - i] = in.readByte();
35 i++;
36 }
37 geoLoc.latitude = ByteBuffer.wrap(lat).

getDouble();
38

39 byte[] lon = new byte[8];
40 i = 0;
41 while(i < 8) {
42 lon[7 - i] = in.readByte();
43 i++;
44 }
45 geoLoc.longitude = ByteBuffer.wrap(lon).

getDouble();

46

47 byte[] elev = new byte[4];
48 i = 0;
49 while(i < 4) {
50 elev[3 - i] = in.readByte();
51 i++;
52 }
53 geoLoc.elevation = ByteBuffer.wrap(elev).

getFloat();
54 }
55

56 long remainder = totalToRead - counter.
getCounter();

57 byte[] data = new byte[0];
58

59 // The remaining bytes must be the payload...
60 if (remainder > 0) {
61 data = new byte[(int) remainder];
62 in.readFully(data, 0, data.length);
63 }

Geolocation is not sent for CONNACK, SUBACK, UN-
SUBACK, PINGRESP packets as they are only for infor-
mation passed from broker to client, and thereby deemed
unnecesary to contain geolocation information. For all packets
mentioned in Table I, with the exception of PUBLISH, the
3rd bit of the fixed header is unused (reserved) in the original
implementation in [11], so we can easily use it to indicate the
presence of geolocation information. Figures 2 shown earlier
and 4 explain where the location data is on the packet.

The PUBLISH control packet needs a different implemen-
tation. Because the 3rd bit is already allocated for Quality of
Service (QOS), and all other packets are also reserved for an
existing use, we chose to implement a new control packet type.
PUBLISHg (=0xF0) is used as the flag type for geolocation
data when it is to be sent. There are 16 available command
packet types within the MQTT standard and 0 through 14 are
used.

We deem geolocation data as an optional attribute, as not
all clients may wish to publish their geolocation data. In
our approach, geolocation data is not included in the packet
payload, since not all packet types support a payload, thus
rendering payloads not a viable option, especially for Green
IoT. Furthermore, we did not wish to require the broker
to examine the payload of any packet, thus keeping our
processing footprint low.

A. Handling of packets

Packets that are received without geolocation are handled
via the original MQTTnet and Paho functions respectively,
and as such can be left unmodified. Packets that are received
with geolocation are handled similarly but with a call to
a last known location updating method, which stores the
client’s unique ID and the location data into a Hashtable
object designed to be compared against the geofence if and
only if they are a subscriber to be sent a PUBLISH. We
have elected to attach geolocation data from all packet types
originating from the client to eliminate the need for specific
packets carrying only geolocation data, and thus reducing
overall network traffic as well.

B. Geofencing

Creating the geofence code was a major part of the addition
of geolocation to MQTT. The geofence filtering is only called
when a PUBLISH reaches the broker, as these packets are
forwarded to subscribing clients.

The mosquitto check polygon mentioned in [7] is a cru-
cial routine that is currently being re-tested for the C# and
Java code respectively. It returns a boolean value indicating
whether the client’s last known location is within the polygon.
If the point is outside the polygon, it simply aborts forwarding
the PUBLISH as the client has indicated it is not interested
in the message. This condition is tested for each client so
that other subscribers may receive packets of interest. Thus,
we have used our own custom geometry library originally
implemented in [18] with features first discussed in [19]. The
library is unmodified for the broker implementation, but it is
reconfigured for mobile clients.

Geofence data is presently submitted and cleared by a client
to the broker using the $SYS MQTT topic convention so that
clients may individually submit geofences of interest. The
broker maintains polygon data for each subscribing client.
Polygons may be static in shape and location or dynamic
and move with the last known location of the client. We are
currently navigating over a few options to provide configura-
tion data from the client to the broker in a manner consistent
with retrieving status information from brokers, we have aptly
named this $SYSg.

C. Android OS Application

(a) OS Subscriber ID Page (b) Subscriber Feed Page

Fig. 5: Android OS App

Figure 5 provides some snapshots of the current imple-
mentation of the Android OS Application for MQTTg. In
Figure 5a, a subscriber (client) can identify themselves on the
network. Pressing the Current Location button will give the

broker your current location and access to your geolocation.
By not pressing Current Location, the given client acts
in original MQTT form lacking geolocation. The topic, say
”Driving Conditions”, will subscribe the client to that topic for
future updates, which will show in Figure 5b. If an update is
provided to the Topic by a publishing client, all other clients
within a geofence bounded area of the publisher’s creation
will receive the message. We are still finalizing the details of
how to define geofences properly by the publishers. A client
can subscribe to as many topics as they choose. In Figure 5b,
all subscribed topic messages will show here. Topics where
geolocation are shared will be specific to a given geofence so
only matching geolocation to a given geofence will show. We
expect to add separate layouts for say a Publisher scenario
versus a Subscriber scenario on the network.

IV. FUTURE WORK

We are still finishing the final testing of the application
of MQTTg for the Android OS. Once finished, the imple-
mentation will pull geolocation directly from the Android OS
and allow publishing clients to quickly and easily create and
destroy polygon geofences on the go. Applications of the
Android client are plentiful but have some key uses in green
IoT, natural disaster containment and safety in this age of
mobile devices. We can also see some direct applications for
visually impaired individuals trying to navigate smart cities
[20]. There is also room to make the Android OS app more
visually appealing.

We have also yet to deal with the Quality of Service (QoS)
level and how it will relate to the MQTTg implementation. The
QoS level is an agreement between the sender of a message
and the receiver of a message that defines the guarantee of
delivery for a specific message. There are 3 QoS levels in
MQTT. QoS is a key feature of the MQTT protocol. QoS gives
the client the power to choose a level of service that matches
its network reliability and application logic. Therefore, there
still needs to be some connection between QoS and MQTTg.
For example, only allowing geolocation packets to be shared
when QoS is level 2 or 3, but not for level 1, as a possible
outcome. There is room and viability to use the 21 bytes of
information as shown in Figure 4 to help manage the QoS
levels as they relate to geolocation.

V. CONCLUSION

MQTT is an open source standard for M2M communication.
Originally designed by IBM, the main use for MQTT is as a
publisher/subscriber protocol. In previous works, MQTT has
shown to be very viable in green communications and more
specifically in green IoT. In this paper, we have introduced a
new version, called MQTTg, that adds geolocation information
to the protocol and offers a revised implementation, that can
help aid in the breadth of uses for MQTT in Smart cities
and energy efficient applications. We feel MQTTg modernizes
the protocol to include a somewhat standard feature of most
protocols in today’s IoT age. The advanced protocol we
implement can be used to offer geolocation as part of the

publish/subscribe infrastructure, thus aiding in the real time
applications that it can be used for. Our implementations offer
versions for both C# and Java environments and adds a mobile
Android OS application as well.

REFERENCES

[1] M. Maksimovic, “Greening the future: green internet of things (g-iot)
as a key technological enabler of sustainable development,” in Internet
of Things and Big Data Analytics Toward Next-Generation Intelligence.
Springer, 2018, pp. 283–313.

[2] A. D. Dwivedi, G. Srivastava, S. Dhar, and R. Singh, “A decentralized
privacy-preserving healthcare blockchain for iot,” Sensors, vol. 19, no. 2,
p. 326, 2019. [Online]. Available: https://doi.org/10.3390/s19020326

[3] A. D. Dwivedi, P. Morawiecki, and G. Srivastava, “Differential crypt-
analysis of round-reduced speck suitable for internet of things devices,”
IEEE Access, vol. 7, pp. 16 476–16 486, 2019.

[4] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, vol. 4, no. 5,
pp. 1125–1142, 2017.

[5] R. A. Light, “Mosquitto: server and client implementation of the mqtt
protocol,” Journal of Open Source Software, vol. 2, no. 13, 2017.

[6] S. Lee, H. Kim, D.-k. Hong, and H. Ju, “Correlation analysis of mqtt loss
and delay according to qos level,” in Information Networking (ICOIN),
2013 International Conference on. IEEE, 2013, pp. 714–717.

[7] R. Bryce, T. Shaw, and G. Srivastava, “Mqtt-g: A publish/subscribe
protocol with geolocation,” in 2018 41st International Conference on
Telecommunications and Signal Processing (TSP). IEEE, 2018, pp.
1–4.

[8] R. Bryce and G. Srivastava, “The addition of geolocation to sensor
networks,” in ICSOFT. SciTePress, 2018, pp. 796–802.

[9] “Mqttnet,” https://github.com/chkr1011/MQTTnet, accessed: 2018-10-
01.

[10] “The eclipse paho project,” https://www.eclipse.org/paho/, accessed:
2018-10-01.

[11] A. Stanford-Clark and U. Hunkeler, “Mq telemetry transport (mqtt),”
Online]. http://mqtt. org. Accessed September, vol. 22, p. 2013, 1999.

[12] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s—a pub-
lish/subscribe protocol for wireless sensor networks,” in Communication
systems software and middleware and workshops, 2008. comsware 2008.
3rd international conference on. IEEE, 2008, pp. 791–798.

[13] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan, “Per-
formance evaluation of mqtt and coap via a common middleware,”
in Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), 2014 IEEE Ninth International Conference on. IEEE, 2014,
pp. 1–6.

[14] P. Fremantle, B. Aziz, J. Kopeckỳ, and P. Scott, “Federated identity
and access management for the internet of things,” in Secure Internet
of Things (SIoT), 2014 International Workshop on. IEEE, 2014, pp.
10–17.

[15] A. Antonić, M. Marjanović, P. Skočir, and I. P. Žarko, “Comparison
of the cupus middleware and mqtt protocol for smart city services,” in
Telecommunications (ConTEL), 2015 13th international conference on.
IEEE, 2015, pp. 1–8.

[16] P. Bellavista, C. Giannelli, and R. Zamagna, “The pervasive environment
sensing and sharing solution,” Sustainability, vol. 9, no. 4, p. 585, 2017.

[17] M. Schulz, F. Chen, and L. Payne, “Real-time animation of equipment in
a remote laboratory,” in Remote Engineering and Virtual Instrumentation
(REV), 2014 11th International Conference on. IEEE, 2014, pp. 172–
176.

[18] C. Tymstra, R. Bryce, B. Wotton, S. Taylor, O. Armitage et al., “Devel-
opment and structure of prometheus: the canadian wildland fire growth
simulation model,” Natural Resources Canada, Canadian Forest Service,
Northern Forestry Centre, Information Report NOR-X-417.(Edmonton,
AB), 2010.

[19] C. Bose, R. Bryce, and G. Dueck, “Untangling the prometheus night-
mare,” in Proc. 18th IMACS World Congress MODSIM09 and Interna-
tional Congress on Modelling and Simulation, Cairns, Australia, 2009,
pp. 13–17.

[20] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

