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Abstract. This work describes a computer based tech-
nique for simulating the spread of wildland fire for
heterogeneous fuel and meteorological conditions. The
mathematical model is in the form of a pair of partial
differential equations, and can model fuels whose fire
perimeter for homogeneous conditions is any given shape,

such as ellipses, double ellipses, lemniscates etc. Pro-
vided the fire does not attempt to burn into an already
burnt out region, then the differen :al equations are easily
solved and a simple method of solution is presented. To
identify regions that are internal to the flre perimeter an
algorithm ilrat uses the turning number of apoint in the
plane relative to the fue perimeter is used. The algorithm
is found o be reliable, and allows for the simulation of
highly complex fire scenarios in a reasonable time. Ex-
ample simulations are presented that involve variations in
fuel, barriers, wind direction changes and multiple fires.
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Introduction

The ability to simulate and hence predict the spread
of a 2 dimensional fire for heterogeneous conditions is
a difficult problem and valuable tool in fire manage-
ment. Due to the diversity of possible fuel types, tle
complexity of the physicafchemical processes and
computational problems in the simulation process there
has been only limited success in the solution of the
problem, and it may some time before it is fully solved
although inroads have been made by a number of
workers. The most successful techniques to date, (in the
authors' opinion), are those that represent the fire
perimeter as a closed curve that expands ih time in a
manner dictated by the mathematical model used,
Wallace, ( I 993), Knight and Coleman, ( 1 993), Richards,
(1990), Roberts, (1989), Anderson et al., (1982). Curve
expansion techniques are not without their problems, a

particular difficulty being the detection of whether a
region has been burnt by the fire, so that a separate paft
of the fire may not burn into that region at a later time.
Recently, techniques for the detection of burnt regions
have been proposed by Wallace, (1993), and Knight and
Coleman, (1993).

A simulation procedure consists of two main com-
ponents, a mathematical model to describe thephenom-
ena and a solution procedure to extract the predictions
of the model. The model used here is the differential
equation model proposed by Richards, (1994), and the
purpose of this work is to demonsfab how the differ-
sntial equations can be solved numerically, and how
burnt regions can be detected. The algorithm for the
detection of burntareas is basedon identifying whether
a region is intemal to the curve by calculating its
turning number, the algorittrm is found to be reliable
and allows the simulation of complex fire scenarios.

Mathematical Model

The mathematical model used is the differential
equation method proposed by Richards, (1994). The
fire perimeter at time r is represented paramefically
in s as a closed curve (r (s,r), y (s,r)), 0 S s < 2n, where
the time derivatives 4(s,r) and ),(s,r) satisfy ttre partial
differential equations.

4(s,t) = x({(s,r) - 0(s,t)6,r)cos0(s,t)
-Y(OG,I) - 0(s,t),s,r)sin0(s,r) (1)

),(s,t) = x(6(s,D - 9(s,t),s,r)sin0(s,0
+Y(f(s,r) - 0(s,r)s,r)cos0(s,r) (Z)

where f(s,t) is the angle of the normal vector and 0(s,r)
is the angle of the wind direction to the.r-axis, both at
(x(s,r),y(s,r)) on the perimeter. The basic premise of the
model is that for a given set of fuel conditions and wind
speed, the rate of spread at any point on ttre fire
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perimeter is a function of the angle between the normal
vector and the wind direction, with the functional
relationship being conrolled by the functionsX and L

For each point (rfi,|,y(s,|) on the perimeter the
functions X and Y are defined by the fuel and wind
speed conditions instantaneously occurring at that
point. The functions are such that if fuel and wind
speed conditions were homogeneous and equal to
those at (r(s,t),y(s,t)), then the curve
(X(Qs,t),Y($s,t)),GQ32n, will define the fire perim-
eter shape after a unit of time for a point source ignition
at the origin and a wind direction of 0 = 0. A
mathematical form forX({,s,r) and f(0,v,0 has been
proposed by Richards, (1994), that allows for most of
the observed perimeter shapes to be represented.

Together with the initial conditions

x(sp) = i(s)
y(s0) = !(s)

where (i(s),f(s)) paramerically represents the fire at
time F0, eqns. (12) can in principle be solved to trace
the progress of the fire.

Basic Solution Procedure

Eulers Method

Desprte the noational complexity of eqns. (1,2)
they are merely expressing that tlrc time derivatives
r,(s,fl and y(s,t) are functions of the fuel and
meteorological conditions at (x(s,t)y(s,t)) and the
spatial derivatives .r,G,t) and I (s,0 ttrat define the
orienation of the curve to the wind direction. The
differential equations can therefore be written as:

r,(s,t) = F(s,t,r,(s,t)4(s,r)) (5)

),(s,t) = G(s,t,r,(s,t),y,(s,r)) (6)

where F and G are the R.H.S. functions of eqns. (1,2).
Eqns. (5,6) are one of the simplest t)?es of time

dependent partial differential equations and there is a
wealth of numerical methods for ttreir solution, pro-
videdthe functionsFandG can beevaluated. Further
work is required to determine the most effective nu-
merical solution technique. For the purpose.s of illus-
tration Euler's Method was used and was found to be
reasonably effective.

If Euler's Method is used, then sarting with ttre
given fire perimeter at e0 the perimeters are approxi-
mated at intervals of time At aparl i.e. at times7Ar7 =
12,3.,, , At timejA, the perimeter is discretised as the
set of n points (r(r,As jAt),y(iAs jAt)), i = 0... n - 1,

where As = 2nln. The notation is used ttrat (rrj,yJ
represents the point (x(iAsjAt),y(iAsjAt)), so that tlie
set of z poins (.r,r,f,), i = 0... n -1, approximate the
perimeter at time JAr.

If at some point the time derivatives.rdl4s;dt) and
ydiAsjAt) are approximated by the forward difference
approximations (x,*r-x,)lAt and (),*,-y. lAt rcspec-
tively, and the spatial derivatives x,(iAsjAt) and
y,(iAsiAt) are approximated using the cenral differ-
ence approximations (xurr-xrr/2As and (y,*,r-y, -r)Mt
respectively, then substinrting thase ino eqns. (5,6)
gives that

x,n, = x,r+AtF(s,t,(x,,r r-x,-r)DAs,(),*,r-y,-,)2As) (7)

!, *, = !, i+AtG (s l,(x u, r-x,-, ) M s,(J u, fl,-, )24 s) (8)

so tlnt the approximation to the perimeter at time
(j+l)At is exprassed as a recumerrce relation in terms
of the perimeter at timeTdr. The initial conditions are
taken frorn the initial conditions of the differential
equations, eqns (3y') and are given by

x,n = i(iAs)
,,, = !(LAs)

By starting at time , = 0 then the eqns. (7,8) Ogether
with the initial conditions allow the progress of the fire
to be raced at intervals of time 4t apart. Smaller
values of At and As give a more accurate
approximation.

Rediscretisatbn of tlu curve

As ttre fire perimeter expands then the distances
between adjacent discretising points increases so intro-
ducing errors into the approximations of 4(s,t) and

),(s,t), especially in regions of high curvature. To solve
this problem extra discretising points are added o the
curve when the distances between adjacent points
becomes large. There are many different and equally
effective ways of doing this, with the technique used
here being that developed by Richards, (1990).

If ,r is the length of line segment connecting the
discretising points at i = /c and i = k-L, and a. and
o(r-r are the acute angles between the line segment and
the next and previous line segments respoctively, then
if

max(cos(u/2),cos(arrf2))>Tll, (11)

a new discretising point is added at the midpoint of the
line segment, where T is a specified threshold value.
This process is repeated recursively on bottr halves of

(3)
(4)

(e)
(10)
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the line segment, until the condition is satisfied by all
the new points added.

Burnt regions

The numerical solution procedure is sraight for-
ward provided ttre functions F and G can be evaluated

at each point and time on the fuel bed. Problems arise
however when the fire has burnt a region of the fuel
bed and then a separate regron or even another fue
attempts to burn into it. The detection of whether a
region has been bumt, so that the values of functions
F and G are now zero in that region, is a non trivial
process computationally.

The algorithm described in the next section al-
though not inexpensive was found to be reliable, and
allows the simulation of highly complex fire scenarios.
The algorithm is based upon detecting whettrer a
discretising point has entered a region that is interior
to the curve, i.e. a burnt region. The moment a
discretising point enters a burnt region it is declared
inactive, and remains stationary for the rest of the
simulation.

Detection of Active and Inactive Discretising
Points Using the Turning Number

Deftnition and calculation of the turning number

At time jAr the perimeter is approximated the set

of discretising points (x,r1,),i = 0... n, which together
with the line segments joining consecutive points forms
an orienAted closed curve. If ttre curve has no
horizontal line segments then each line segment can be
considered to have an upward or a downward orien-
tation. Figure 1 shows such a curve where the arrows
indicate the direction associated wittr each line seg-
menL

Provided the curve has no exactly horizontal line
segments, when a horizontal lineis drawn from apoint
in the plane that is external to the curve to a position
sufficiently far to the left to also be external to ttre
curve, then the number of intersections of this line with
line segments of an upward orientation will equal those
of a downward orientation, e.g. the op three dotted
lines in Figure 2. If the point is not external to the curve
then the difference between the number of intersections

0
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Flgure 1. The fire perimeter represented as a closed directed curve, with the arrows indicating the direction associated with each line
segmenl The unfilled circles are the active discretising poins and the solid circles are the inactive ones.
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with line segments of an upward orientation and a
downward orientation will be non zero, with the dif-
ference being called the turning number of the point
relative to the curve, e.g. the boftom three dotted lines
of Figure 2. The turning number of a point is the
number of times a particle traversing a directed path

around the curve will rotate counter clockwise around
the point, (with clockwise rotations cancelling counter
clockwise rotations), and will be zero if and only if the
point is external to the curve.

The curve itself now partitions the plane into
regions of equal tuming number, wittr those regions
external to the curve having a turning number of zero.
A discretising polnt is now considered to be active if
it is adjacent to a region of zero turning number. Figure
I shows a curve together with the regions of equal
turning number, with the unfilled circles being the
active discretising points, and the solid circles being the
inactive ones.

Provided a line segment from a different part of the
curve does not pass through a discretising point, then
the discretising point will be adjacent to two regions
of different turning number. One of these regions can

tr'igure 2. A closed directed curve where the dashed lines are
horizontal lines drawn from poins not on the curve, to posi-
tions sufficiently far to the left of the curve so as to be extemal
to the curve. The arrows indicate the direction associated with
each line segment.

be considered to be to ttre left of ttre discretising point
and the second region is either to the right" above or
below. An algorithm to detsrmine the nrning number
of these two regions is now presented.

Determirwtion of the turning rumtber
of the left hand region

To determine the tuming number of the region o
the left of a discretising point, firstly a horizontal line
is drawn from the discretising point to a position that
is to the left of the whole curve, (and hence extemal
to the curve). The difference between the number of
intersections of this hmizontal line with line segments
of a downward orientation and an upward orientation
is now the turning number of the left hand region. It
should be noted that the intersection of the horizontal
line with the curve at the actual discretising point in
question is not included in this calculation.

In the event of this horizontal line passing exactly
through another discretising point then the line is
intersecting with two line segments at this point. If
both line segments are of the same orientation a single
intersection of this orientation is considered to have
occurred. If the line segments are of a different
orientation then the horizontal line is technically only
touching the curve and no intersection is registered.

Ilaving determined the turning number of ttre left
hand region, if it is zero the discretising point is
considered active and the process is complete, other-
wise ttre turning number of the second region must be
calculated.

Determirution of the turning nuntber
of the secondregion

To calculate the nrrning number of the second
region the contibution of the curve intersecting the
horizontal line at the discretising point is also included
in the difference between the number of upward and
downward intersections.

If bottr the line segments adjacent to the discretising
point are of the same orientation then the second region
will be to the right of the first region, and a single
intersection with the same orientation of the nvo line
segments is considered to have occurred. If the two line
segments adjacent to the discretising point are of
different orientations then the second region will lie
either above or below the point. This being the case
tlen an intersection with an orientation equal to that of
the left hand line segment is considered to have
occurred. If both the adjacent discretising points are
above the point in question ttren the left hand line
segment is defined as the one that subtends the largest
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counterclockwise angle to the.r-axis, otherwise it is the

one that subtends the largest clockwise angle.
Having determined the urning number of the sec-

ond region the process is now complete, with the
discretising point being active if the turning number is

0.

Horizontal linc segments and
multiple adjacent re gions

It is possible for a line segment to be exactly
horizontal, so that the concept of an upward or a
downward orientation is not well defined. The algo-
rithm can be modified to account for this situation,
however, it becomes unwieldly and more difficult to
implement To solve this problem the curve is scanned
for horizontal line segments, if one is found then one
of its end poins is pertubed by a very small amount,
so as to render the line segment non-horizontal. Even
on a micro computer this pernrbation can be made as

small as 1Ot3 of a unit, and hence well within the error
of the model and the numerical method.

Although rare, it is possible for a line segment from
a separate part of the curve to pass exactly through the
discretising point. If this is the case then the discretising
point is adjacent to more than 2 regions of different
turning number. Again it is possible o modify the
algorithm to account for this situation, however due to
the way in which fires burn even if the point is adjacent
to region of z.erc tuming number it is about to be
insantaneously consumedby fire. The algorithm merely
declares such points as inactive.

Multiplefires

When dealing with more than one fire each fire will
be represented as a separate closed curve, and for a
discretising point to be active nvo conditions must be
satisfied. Firstly the discretising point must be active
if the fire of which it is a part were the only one
burning, which is determined by applying the algo.
rithm in is basic form. Secondly the discretising point
must be external to all of the other flres, which is
determined by calculating is turning number relative
to each of the other fires, which should all be zero for
the discretising point to be active. The turning
numbers are calculated in the previously described
manner. If a discretising point lies exactly on ttre
perimeter of another fire then it is declared inactive.

Gercral comtncnts

Alttrough the literal description of the algorittrm is
fairly involved, it translates easily into computer code.

This is not an inexpensive algorithm as it is of order
22, where n is the number of discretising points.
However, it is not as expensive as the order d would
suggest since it involves very few arithmetic opera-
tions. The algorithm has been defined in its most basic
form, and the authors feel that there is much room for
developing this idea further so as to improve its
performance.

Example Simulations

The following simulations illustrate the capabilities
of the simulation procedure for a number of non trivial
fire scenarios. The point source ignitions are approxi-
mated by a small circle 0.01 of a spacial unit in radius,
with 32 points evenly distributed around it. The times
for the simulations are those for a 486 30MHz micro
computer with a floating pointprocessor, and are given
to the nearest minute. It should be bom in mind when
evaluating these times that small time steps have been
used to pick up the fine details of the fire behaviour,
and for the purposes of illusfation the simulation
procedure has been presented in its most basic form.
Even with present day worksation technology, times
40 times faster can be achieved.

Figure 3 demonstrates the capabilities of the simu-
lation procedure for a fire situation involving a system
of barriers and a wind direction change. For Figure 3A
the fuel is such ttrat for a cons0ant wind direction the
fre will expand as a double ellipse, with a blunt head
and a sharp back flre region. The fire perimeters are
displayed at equal intervals of time apart, with 20
intermediate perimeters being calculated between each
displayed perimeter. Figure 3B is the same as Figure
3A save that the fuel is such ttrat for a constrnt wind
velocity the fire perimeter shape is a double ellipse with
a sharp head and a blunt back fire region. The forward,
flank and back spread rates are the same for both the
double eltpses, in fact the fire shape in Figure 38 is
that of Figure 34. turned the other way around. The
resulting fire perimeters are certainly different, with the
significance of ttre difference depending on what infor-
mation is required from ttre simulation. A detailed
discussion of the effects of the perimeter shape used is
best left to a separate study, although the comment can
be made that the head fire region of the sharp headed
ellipse takes longer to move around a barrier, which is
because of the more rapid decrease in the rate of spread
around the perimeter as one moves away from the head
fire region. The time for the each of ttre simulations was
17 minutes.

Figure 4 demonstates the capabilities of the simu-
lation procedure for four interacting eltptical fires
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Figure3. Doubleellipticalfires burningpastasequenceof barriers, togetherwithawinddirectionchangefrom0=0o 0=ql4
at r = 80 time units. The forward, flank and back spread rates for both fires are 1.85, 0.66, and 0.15 spacial unis per unit of time
respectively. The fire shape for a constant whd direction in 38 is the inverted version of that for 3A. The perimeters are displayed
at intervals 10 units of time apart, with 20 intermediate perimeters being calculate4 i.e. Ar = 0J of a time rmit. A rediscretising
threshold of T =1.5 spacial units was used.

starting at different times, with a wind direction
change over a fuel bed consisting ofnvo fuel types and
a system of barriers. The fire perimeters are displayed
at equal intervals of time apart with 30 intermediate
perimeters being calculated bennreen each displayed
perimeter. The separate fires eventually meet and form
interfaces in a similar manner to the way in which ttre
arms form by passing around a barrier. The do$ed
regions are areas of slower burning fuel. As the fire
enters these regions it slows down whilst continuing
along the ou0er edge of region with the faster spread
rate. This causes the perimeter to bend and thus a head
fire region separate from the main one forms. The
borders of these regions are irregular in nature and as

such cause sequences of very small head fires to form
that burn into each other and eventually dissipate. This

is responsible for the irregular nature of the fire
perimeter after passing over a fuel interface and small
time steps are required to pick up tlrc deails of the
inegularity. The time for the simulation was 23
minutes.

Conclusions

A simulation procedure based on the solution of a
pair of partial differential equations has been presented
that can simulate fire spread for highly complex fire
scenmios. The two main componenB of the procedure
arc ttre basic solution method for ttre solution of tlre
differential equations, which uses Euler's metho( and
the detection of burn out that uses the hrning number
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Figure 4. Four elliptical fires, ignited at different times, buming over two different fuels types and a sequence of barriers, together
withawinddirectionchangeatr=40timeunits.Inthedottedareasthe forward,flankandbackspreadratesare0.925,0.33and0.075
spacialunitsperunitoftimerespectively,intheremainingfasterburningfuel theyare1.85,0.66and0.l5 respectively. Thefire
at the center bottom was ignited at r = 0 time units with the two fires to the left and right ignited at ! = 20 time units; the top right
fire was ignited at r = 55 time unis. The fire perimeters are displayed 10 time unis apart, with 30 intermediate perimeters being
calculated, i.e. At = 0.333 time units. A rediscretising threshold ? =l .5 spacial units was used.

of apointrelative to theperimetor. Euler's method was

used for purposes of illusration and there are many
more sophisticated methods of solution that can be
used, with further work being required to determine the
most appropriato one. The algorittrm for detecting
burnt regions was found to be reliable and the authors
feel that there is much room for further optimisation.

Despite the basic form in which the procedure has

been presented, it allows for the simulation of fire
scenarios of a complexity that previously has not been
done.
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